US009424117B1

a2 United States Patent (10) Patent No.: US 9,424,117 B1
Bono et al. 45) Date of Patent: Aug. 23,2016
(54) VIRTUAL STORAGE PROCESSOR (56) References Cited
FAILOVER
U.S. PATENT DOCUMENTS
(71) Applicant: EMC Corporation, Hopkinton, MA 6,574,753 Bl 6/2003 Haynes et al.
(as) 6,671,705 B1 12/2003 Duprey et al.

6,823,349 Bl 11/2004 Taylor et al.
7,076,691 Bl 7/2006 Dobberpuhl et al.

(72) Inventors: Jean-Pierre Bono, Westborough, MA 7127.638 Bl 10/2006 Sardella et al.
(US); Frederic Corniquet, Le Pecq 7,370,235 Bl 5/2008 Gulve et al.
(FR); Miles A. de Forest, Bahama, NC 7,383,463 B2 6/2008 Hayden et al.
(US); Himabindu Tummala, South 7,401,251 Bl 7/2008 Haynes et al.

7,500,535 Bl 3/2009 Gulve et al.

Grafton, MA (US); Walter C. 7,529,887 Bl 5/2009 Haase et al.

Forrester, Berkeley Heights, NJ (US) 7,631,155 Bl 12/2009 Bono et al.

7701979 B2% 52010 Salli covvvveeeeeeeerrrreeeeeen 714/4.1
7,769,722 Bl 8/2010 Bergant et al.

(73) Assignee: EMC Corporation, Hopkinton, MA 7770059 Bl 32010 Glade et al.

(US) 7,818,517 Bl 10/2010 Glade et al.
7,849,262 B1 12/2010 Glade et al.
N ;
(*) Notice: Subject to any disclaimer, the term of this ;’ggi’ﬁg g} %ggﬁ PG(iztlI(lil: :tt :11' """"""""""" 71472
patent is extended or adjusted under 35 7.992.038 Bl 82011 Glade et al.
U.S.C. 154(b) by 521 days. 8,112,480 Bl 2/2012 Cox et al.
8,230,256 B1* 7/2012 Rautcccoevrvrnennen. 714/13
(21) Appl. No.: 13/838,540 (Continued)
Primary Examiner — Bryce Bonzo
(22) Filed: Mar. 15. 2013 Assistant Examiner — Elmira Mehrmanesh
' ’ (74) Attorney, Agent, or Firm — BainwoodHuang
(51) Int. CL 57 ABSTRACT
GO6F 11/00 (2006.01) A technique performs virtual storage processor (VSP)
GO6F 1107 (2006.01) failover. The technique involves accessing, by a first physi-

cal storage processor of the data storage apparatus, a VSP to

(52) US.ClL create an operating environment for a host file system from

CPC o GO6F 11/0751 (2013.01) the first physical storage processor. The technique further
(58) Field of Classification Search involves, after accessing the VSP to create the operating
CPC ... GOGF 9/45558; GOGF 11/1464; GOGF environment for the host file system from the first physical

11/1484; GO6F 11/2028; GO6F 11/2023; storage processor, detecting a failure of the first physical
GOGF 2201/815; GOGF 11/2097; GOGF storage processor. The technique further involves accessing,
2009/45562; GO6F 3/067, GO6F 11/1438; in response to detecting the failure of the first physical
GO6F 17/30233: GOGF 2009/45575: GO6F storage processor and by a second physical storage proces-
2009/45595; GOéF 11/2007; GOGF 1’1 /2017, sor of the data storage apparatus, the VSP to re-create the

GOG6F 11/2092; HO4L 67/1097; HI04L 69/40 operating environment for the host file system from the
USPC oottt 714/4.11 second physical storage processor.

See application file for complete search history. 20 Claims, 8 Drawing Sheets

; Host Y
2z v v | L0
P s

| HODIEFD <20

US 9,424,117 B1
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

8,234,380 Bl
8,285,758 Bl
8,346,735 Bl
8,346,788 Bl
8,375,385 Bl
8,380,757 Bl

7/2012
10/2012
1/2013
1/2013
2/2013
2/2013

Tetreault et al.
Bono et al.
Tang et al.
Kim et al.
Harel et al.
Bailey et al.

8,566,371 B1*

8,706,833 Bl

8,949,656 Bl1*
2004/0030668 Al*
2005/0108593 Al*
2005/0193245 Al*
2006/0075191 Al
2007/0237158 Al

* cited by examiner

10/2013
4/2014
2/2015
2/2004
5/2005
9/2005
4/2006

10/2007

Bono et al.cccoenene 707/822
Bergant et al.

Ninan et al.c.c..... 714/4.11
Pawlowski et al. 707/1
Purushothaman et al. 714/4
Hayden et al. 714/13
Lolayekar et al.

Leef et al.

U.S. Patent Aug. 23,2016 Sheet 1 of 8 US 9,424,117 B1

100
Host 2 Host 3 Host 4 ¥
Host 1 110(2) 110(3) 110(4) |
110(1) iISCSI NFS SMB3.0 |
FC i
Host N
112(2) 112(3) 112(4) 110{N
;) CIFS
112(1) A— A— i n T
; C10 C10 10
4 \ 2 ; A ST ;
i 10
e 112(N)
\ a0
PN 10 |
KN \ 2
/ Netwaork |
| 114
\\\ T
“\\,7,/5\./»*/ To/From other SP(s)
i >
\ 4 116
Storage Processor {SP) 120 '/"
Communication Interface(s) 122
Processor(s) 124
Memory 130
0s 134
Container 132
HDD/EFD 180
VSP 1 10 Stack 140
150(1 e
""""""""""" Front End > {
""""""""""" ﬂ [1 S
VSP 2 7y e
150(2) : [—
__________ b A —
Back End
VSP 3 144
150(3) e
Kernel 136
Config DB 170
FIG. 1

U.S. Patent Aug. 23,2016 Sheet 2 of 8

US 9,424,117 B1

User Object
Layer LUN
206 210

HFS
212

Mapping LUN-File HFS-File
Layer Mapping Mapping
208 220 222

Lower Deck

T
i ‘ FS(s) y,
i ; /1 u 202 242 I
L 230 a4 /o3

7 I3 |
1
\ 240 a4 /246
y |
7 ; {
; : |
,/ y / |
/ . |
/ | /
/ y S \
/ \ / \
Vi y / i
/S .
i \ //
e Mo e e
.] St

260 1| :

FIG. 2

U.S. Patent Aug. 23,2016 Sheet 3 of 8 US 9,424,117 B1
300
R HFS 1312
‘ Root FS 342 ‘ FA
Ly 3o~ L
L Local HFS 2 322
\\\\\ ,'// ’
&—— Rep | i e
l FB
--------------------- } 320
LUN 1332 |
. MP1 - s ’
i FC
............. 330 - i
. MP2 %
} MP3 }:
T / """"" Config FS 344
, IF Config
/ / - CIFS
| ! i
\ S —— [NFS
‘ FE
340 7| e e [Exports
o CAVANDMP
e NISIDNS/LDAP
\) Usermapper
\\ e Host Objects
A y L G Parameters
~—— Log/Statistics

FIG. 3

U.S. Patent Aug. 23,2016 Sheet 4 of 8 US 9,424,117 B1

Owner 400

Authentication

Root FS UDFS ID

VSP ID 1 Config FS UDFS ID FIG. 4

410 Host FS A UDFS ID
Host FS B UDFS ID
Host Interfaces
VSP 1 VSP 2 VSP 3
150(1) 150(2) 150(3)
FIG. 5A
Pool
204
VSP 1 VSP 2 VSP 3
150(1) 150(2) 150(3)
FIG. 5B
Pool 1 Pool 2 Poof 3
550(1) 550(2) 550(3)

U.S. Patent Aug. 23,2016 Sheet 5 of 8 US 9,424,117 B1

600

Store a network address and a set of host
data objects accessible within a namespace
of a virtualized storage processor (VSP)
operated by a physical storage processor of
the data storage apparatus, the namespace
including only names of objects that are /

specific {o the VSP

610

Receive, by the physical storage processor, a
612 - | transmission over the network from a host
computing device, the transmission directed
to a network address and including an 1O
request designating a pathname to a host
data object to be written or read

Identify the host data object designated by
the IO request by (i) matching the network
address to which the transmission is directed
with the network address stored for the VSP,
to identify the VSP as the recipient of the |10
request, and (ii) locating the host data object
within the namespace of the VSP using the
pathname; and

614 -~

FIG. 6

Process the 10 request to complete the
requested read or write operation on the
identified host data object

616 -

US 9,424,117 B1

Sheet 6 of 8

Aug. 23, 2016

U.S. Patent

L 9Old

70¢ l00d abeioyg
(1Xakos (2)V)r08 . (L(W)r08 —.
o [N B \.\\L: —
i (1X@)908 . Tove0s (IXV)908
S 150H oo S41s0H S 1S0H
mmwffi.: A \J o :Pu\,x\u P A
- (1)(a)zos (1)(w)zos —
@Wzog - " LTy T
L OXawve v @vve | TLVIREE
'S Byuod dsA o 'S4 Byuod dSA| | S Byuod dsA
W >
7 ¥08/208
vy | vy
(@105t 2NVI05T (NvI05T
dSA ' e dSA | dSA
Y. N T T
@021 dS oISk e S v V02T oS [eaishud
(z)808 (1)808 051
eq | _
AR ; 08 aoBja| J8Sh) 0zt oLl
- "00v

US 9,424,117 B1

Sheet 7 of 8

Aug. 23, 2016

U.S. Patent

8 Old
¥0z [00d abeinig
- (i)avos (2XVIv08 —. (Lwvos —.
e — . P T = \\\Lyw yyyyyy R
- @908 (1)(v}90g
 SdisoH ot _ _ S4 1S0H
- (1)(@)zos i (1Xv)zog —
T T (@NW)zog .~ i S
__UNawye | - IvIvve
'S4 B6yuoD dsA e S ByuoD dsSA
< al " a
ﬁ e
| | vosreos
"
(Lglost 2Nviost [
dSA dSA dSA
(g)oz1 ds eoishud {(V)0Z1 dS ieoishud
N
0S5}
st I
| 0.1 eseqereq | =g > >
| uoneInByuos | 018 spuewiwiod Buinssj , \
o 08 soeyau] Josn T 1
_A,//

US 9,424,117 B1

Sheet 8 of 8

Aug. 23, 2016

U.S. Patent

906

¥06

c06

006

6 Old

uonesado
yoeqgje) e wioped Ajjeuciido pue (018 ‘soslqo eiep peseq-»20iq

TUIM JSA 941 ssedsal) AJusiinouod ‘4SA aui o seumo Asewind ayj st

10ss900.d abeliols [eoishyd 1841 oyt 1ey) sajeoiput smesedde abeiols
BIRp 9y} JO aseqelep uoneinbyuod e ybnoyl uaas 4SA eyl aziin
“B-8) J0ss9001d abeiols jeaisAyd puooes ayl woly WolsAs ajiy 1soy
8y} Jo} JuawuocHAue Buneiado aiy 91eai0-31 0] dSA 8ul ‘snjeiedde
obel0ls eiep ay} jo Jossasold abeiols jeoisAyd puodes e Ag ‘ss800y

Jossasoid abelols jeaisAyd 1S4y 8y} JO ainjie] e 10018(]

e

{dSA 2 j0 waisAs o)y uoneinbyuos QA e sseooe “68) Jossasoold
obeliois jeoisAyd Jsii Y] WO} WSISAS)1} 1SOY B 10] JUSWUOIAUS
Bunesedo ue a1e810 0} (dSA) J0ssa00.d abeiols jenia e ‘snjesedde
obelols elep e Jo Jossaooud abeiols jeoisAud 1s41) e Ag *sS900Y

US 9,424,117 Bl

1
VIRTUAL STORAGE PROCESSOR
FAILOVER

BACKGROUND

A conventional data storage system, which is configured
for failover operation, includes N+1 physical storage pro-
cessors. That is, there are N physical storage processors that
provide file-based access to host data by processing file-
based host input/output (I/O) requests. Additionally, there is
one spare physical storage processor in standby mode.

During operation, if one of the N physical storage pro-
cessors providing file-based access to the host data fails, the
spare physical storage processor transitions into operation
from standby mode. That is, the spare physical storage
processor takes over for the failed physical storage processor
by processing file-based host I/O requests in place of the
failed physical storage processor.

SUMMARY

Unfortunately, there are deficiencies to the above-de-
scribed conventional failover approach which uses an N+1
failover model. In particular, the above-described conven-
tional failover approach is very different from a block-based
failover scheme in which block-based objects (e.g., vol-
umes, logical units of storage or LUNSs, etc.) which are
owned by a failed physical storage processor are trespassed
temporarily to a healthy physical storage processor. Accord-
ingly, to provide a data storage system which supports both
block-based and file-based access to host data, the data
storage system must be configured with two very different
failover models, i.e., an N+1 failover model for file and a
trespass failover model for block.

In contrast to the above-described conventional file-based
failover approach which uses an N+1 failover model,
improved techniques are directed to performing virtual
storage processor (VSP) failover in a manner similar to that
of a trespass model for block-based failover. Along these
lines, access to a VSP which is used to create an operating
environment for a host file system is moved from a failed
physical storage processor to a healthy physical storage
processor. The healthy physical storage processor then
accesses the VSP to recreate the operating environment for
the host file system. Such failover operation takes place even
though the failed physical storage processor may continue to
be identified as the primary owner of the VSP (i.e., even
though the VSP has been trespassed on to the healthy
physical storage processor). Accordingly, such VSP failover
enables file and block failover to share a common frame-
work thus alleviating the need to support block-based and
file-based access to host data using two very different
failover models.

One embodiment is directed to a method of performing
virtual storage processor (VSP) failover. The method
includes accessing, by a first physical storage processor of
the data storage apparatus, a VSP to create an operating
environment for a host file system from the first physical
storage processor (i.e., the primary owner of the VSP). The
method further includes, after accessing the VSP to create
the operating environment for the host file system from the
first physical storage processor, detecting a failure of the first
physical storage processor. The method further includes
accessing, in response to detecting the failure of the first
physical storage processor and by a second physical storage
processor of the data storage apparatus, the VSP to re-create

10

15

20

25

30

35

40

45

50

55

60

65

2

the operating environment for the host file system from the
second physical storage processor.

In some arrangements, the VSP includes a VSP configu-
ration file system which stores data defining the operating
environment for the host file system. In these arrangements,
accessing the VSP by the first physical storage processor
includes controlling a root file system of the VSP and
mounting the VSP configuration file system and the host file
system to the root file system of the VSP by the first physical
storage processor to access the VSP configuration file sys-
tem and the host file system from the first physical storage
processor. Likewise, accessing the VSP by the second physi-
cal storage processor includes controlling the root file sys-
tem of the VSP and mounting the VSP configuration file
system and the host file system to the root file system of the
VSP by the second physical storage processor to access the
VSP configuration file system and the host file system from
the second physical storage processor.

In some arrangements, accessing the VSP by the first
physical storage processor further includes processing, by
the first physical storage processor, host input/output (I/O)
requests on the host file system. Additionally, accessing the
VSP by the second physical storage processor further
includes processing, by the second physical storage proces-
sor, host 1/0O requests on the host file system.

In some arrangements, the first physical storage processor
is considered a primary owner of the VSP within the data
storage apparatus. Here, accessing the VSP by the second
physical storage processor of the data storage apparatus
includes providing the operating environment for the host
file system from the second physical storage processor while
the first physical storage processor remains considered the
primary owner of the VSP.

In some arrangements, the data storage apparatus includes
a configuration database containing a set of records which
indicate that the first physical storage processor is consid-
ered the primary owner of the VSP. In these arrangements,
providing the operating environment for the host file system
from the second physical storage processor includes main-
taining the set of records contained within the configuration
database to continue to indicate that the first physical storage
processor is considered the primary owner of the VSP while
the second physical storage processor accesses the VSP.

In some arrangements, the method further includes, after
the second physical storage processor accesses the VSP to
re-create the operating environment for the host file system
from the second physical storage processor, detecting
restored availability of the first physical storage processor.
In these arrangements, the method further includes, after
detecting restored availability of the first physical storage
processor, performing a failback operation to re-access the
VSP, by the first physical storage processor of the data
storage apparatus, to re-create the operating environment for
the host file system from the first physical storage processor.

It should be understood that performing the failback
operation may be carried out in response to a user entered
command to failback the VSP from the second physical
storage processor to the first physical storage processor.
Alternatively, performing the failback operation may be
carried out automatically upon detection of restored avail-
ability of the first physical storage processor.

In some arrangements, performing the failback operation
includes relinquishing control of the root file system of the
VSP and un-mounting the VSP configuration file system and
the host file system from the root file system of the VSP by
the second physical storage processor. Performing the fail-
back operation further includes subsequently obtaining con-

US 9,424,117 Bl

3

trol of the root file system of the VSP and re-mounting the
VSP configuration file system and the host file system to the
root file system of the VSP by the first physical storage
processor. After the failback operation has been completed,
the method includes re-accessing the VSP by the first
physical storage processor to process host 1/O requests on
the host file system by the first physical storage processor.

In some arrangements, the method further includes, in
response to the detected failure of the first physical storage
processor, trespassing, by the second physical storage pro-
cessor of the data storage apparatus, a set of block-based
data objects to the second physical storage processor to
concurrently failover file-based host data access and block-
based host data access from the first physical storage pro-
cessor to the second physical storage processor. Such opera-
tion enables file-based failover to be handled together the
same way a LUN may be trespassed to a remaining healthy
physical storage processor under a failure condition (e.g., a
software failure, a hardware failure, a firmware failure,
combinations thereof, etc.).

It should be understood that, in the cloud context, elec-
tronic circuitry is formed by remote computer resources
distributed over a network. Such a computing environment
is capable of providing certain advantages such as enhanced
fault tolerance, load balancing, processing flexibility, etc.

Other embodiments are directed to electronic systems and
apparatus, processing circuits, computer program products,
and so on. Some embodiments are directed to various
methods, electronic components and circuitry which are
involved in performing VSP failover.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages will be
apparent from the following description of particular
embodiments of the invention, as illustrated in the accom-
panying drawings, in which like reference characters refer to
the same parts throughout the different views. In the accom-
panying drawings,

FIG. 1 is a block diagram showing an example data
storage apparatus in an environment wherein improved
techniques hereof may be practiced, the data storage appa-
ratus including a storage processor having multiple virtual-
ized storage processors (VSPs);

FIG. 2 is a block diagram showing example features of the
front end of FIG. 1 in additional detail;

FIG. 3 is a block diagram showing an example set of file
systems of a VSP of FIG. 1;

FIG. 4 is a table showing an example set of records stored
in a configuration database that defines a VSP that can be run
on the storage processor of FIG. 1;

FIGS. 5A and 5B are block diagrams showing example
arrangements of virtualized storage processors; and

FIG. 6 is a flowchart showing an example process for
managing host data using a VSP.

FIG. 7 is an example showing the locations of various
VSPs among physical storage processors at a first operating
time just prior to failover.

FIG. 8 is the example showing the locations of the various
VSPs at a second operating time after failover.

FIG. 9 is a flowchart of a procedure which is performed
to achieve VSP failover among physical storage processors.

DETAILED DESCRIPTION
Overview

Embodiments of the invention will now be described. It is
understood that such embodiments are provided by way of

40

45

65

4

example to illustrate various features and principles of the
invention, and that the invention hereof is broader than the
specific example embodiments disclosed.

An improved technique is directed to performing virtual
storage processor (VSP) failover in a manner similar to that
of a trespass model for block-based failover. That is, access
to a VSP which is used to create an operating environment
for a host file system is moved from a failed physical storage
processor to a healthy physical storage processor. The
healthy physical storage processor then accesses the VSP to
recreate the operating environment for the host file system.
Such failover operation takes place even though the failed
physical storage processor may continue to be identified as
the primary owner of the VSP (i.e., even though the VSP has
been trespassed on to the healthy physical storage proces-
sor). As a result, such VSP failover enables file and block
failover to share a common framework thus alleviating the
need to support block-based and file-based access to host
data using two very different failover models.

Data Storage Apparatus Details

Data storage systems typically include one or more physi-
cal storage processors (SPs) accessing an array of disk
drives and/or electronic flash drives. Each SP is connected to
a network, such as the Internet and/or a storage area network
(SAN), and receives transmissions over the network from
host computing devices (“hosts™). The transmissions from
the hosts include “IO requests,” also called “host 10s.”
Some IO requests direct the SP to read data from an array,
whereas other 10 requests direct the SP to write data to the
array. Also, some 10 requests perform block-based data
requests, where data are specified by LUN (Logical Unit
Number) and offset values, whereas others perform file-
based requests, where data are specified using file names and
paths. Block-based 1O requests typically conform to a block-
based protocol, such as Fibre Channel or iSCSI (Internet
SCSI, where SCSI is an acronym for Small Computer
System Interface), for example. File-based IO requests typi-
cally conform to a file-based protocol, such as NFS (Net-
work File System), CIFS (Common Internet File System), or
SMB (Server Message Block), for example.

In some data storage systems, an SP may operate one or
more virtual data movers. As is known, a virtual data mover
is a logical grouping of file systems and servers that is
managed by the SP and provides a separate context for
managing host data stored on the array. A single SP may
provide multiple virtual data movers for different users or
groups. For example, a first virtual data mover may organize
data for users in a first department of a company, whereas a
second virtual data mover may organize data for users in a
second department of the company. Each virtual data mover
may include any number of host file systems for storing user
data.

In a typical virtual data mover arrangement, the SP has a
root file system with mount points to which the host file
systems of each virtual data mover are mounted. Thus, the
SP and all its virtual data movers form a single, large
directory and all share a common namespace. Hosts can
access their virtual data mover-managed data by connecting
to the SP over the network, logging on, and specifying paths
relative to the SP’s root where their data are kept. The
typical arrangement thus requires hosts to access data of a
virtual data mover using paths that are referenced to and
dependent upon the root of the SP.

In addition, settings for prescribing virtual data mover
operations are conventionally stored in the root file system
of'the SP. Many of these settings are global to all virtual data

US 9,424,117 Bl

5

movers operating on the SP; others may be specific to
particular virtual data movers.

Unfortunately, the intermingling of virtual data mover
content within an SP’s root file system impairs the ease of
mobility and management of virtual data movers. For
example, administrators wishing to move a virtual data
mover (e.g., its file systems, settings, and servers) from one
SP to another SP must typically perform many steps on a
variety different data objects. File systems, server configu-
rations, and other settings may need to be moved one at a
time. Also, as the contents of different virtual data movers
are often co-located, care must be taken to ensure that
changes affecting one virtual data mover do not disrupt the
operation of other virtual data movers.

In contrast to conventional approaches, an improved
technique for managing host data in a data storage apparatus
provides virtualized storage processors (VSPs) as substan-
tially self-describing and independent entities. Each VSP has
its own namespace, which is independent of the namespace
of any other VSP. Each VSP also has its own network
address. Hosts may thus access VSPs directly, without
having to include path information relative to the SP on
which the VSPs are operated. VSPs can thus be moved from
one physical SP to another with little or no disruption to
hosts, which may in many cases continue to access the VSPs
on the new SPs using the same paths as were used to access
the VSPs on the original SPs.

In some examples, each VSP includes within its
namespace a configuration file system storing configuration
settings for operating the VSP. These configuration settings
include, for example, network interface settings and internal
settings that describe the VSPs “personality,” i.e., the man-
ner in which the VSP interacts on the network. By providing
these settings as part of the VSP itself (e.g., within the file
systems of the VSP), the VSP can be moved from one
physical SP to another substantially as a unit. The increased
independence of the VSP from its hosting SP promotes many
aspects of VSP management, including, for example, migra-
tion, replication, failover, trespass, multi-tenancy, load bal-
ancing, and gateway support.

In some examples, the independence of VSPs is further
promoted by storing data objects of VSPs in the form of
respective files. These data objects may include, for
example, file systems, [LUNs, virtual storage volumes
(vVols), and virtual machine disks (VMDKs). Each such file
is part of a set of internal file systems of the data storage
apparatus. Providing data objects in the form of files of a set
of internal file systems promotes independence of VSPs and
unifies management of file-based objects and block-based
objects.

In accordance with improvements hereof, certain embodi-
ments are directed to a method of managing host data on a
data storage apparatus connected to a network. The method
includes storing a network address and a set of host data
objects accessible within a namespace of a virtualized
storage processor (VSP) operated by a physical storage
processor of the data storage apparatus. The namespace
includes only names of objects that are specific to the VSP.
The method further includes receiving, by the physical
storage processor, a transmission over the network from a
host computing device. The transmission is directed to a
network address and includes an 1O request designating a
pathname to a host data object to be written or read. The
method still further includes identifying the host data object
designated by the 1O request by (i) matching the network
address to which the transmission is directed with the
network address stored for the VSP, to identify the VSP as

20

25

40

45

50

55

6

the recipient of the 10 request, and (ii) locating the host data
object within the namespace of the VSP using the pathname.
The IO request is then processed to complete the requested
read or write operation on the identified host data object.

Other embodiments are directed to computerized appara-
tus and computer program products. Some embodiments
involve activity that is performed at a single location, while
other embodiments involve activity that is distributed over a
computerized environment (e.g., over a network).

An improved technique for managing host data in a data
storage apparatus provides virtualized storage processors
(VSPs) as substantially self-describing and independent
constructs.

FIG. 1 shows an example environment 100 in which
embodiments of the improved technique hereof can be
practiced. Here, multiple host computing devices (“hosts™)
110(1) through 110(N), access a data storage apparatus 116
over a network 114. The data storage apparatus 116 includes
a physical storage processor, or “SP,” 120 and storage 180.
The storage 180 is provided, for example, in the form of hard
disk drives and/or electronic flash drives. Although not
shown in FIG. 1, the data storage apparatus 116 may include
multiple SPs like the SP 120. For instance, multiple SPs may
be provided as circuit board assemblies, or “blades,” which
plug into a chassis that encloses and cools the SPs. The
chassis has a backplane for interconnecting the SPs, and
additional connections may be made among SPs using
cables. It is understood, however, that no particular hard-
ware configuration is required, as any number of SPs (in-
cluding a single one) can be provided and the SP 120 can be
any type of computing device capable of processing host
10s.

The network 114 can be any type of network, such as, for
example, a storage area network (SAN), local area network
(LAN), wide area network (WAN), the Internet, some other
type of network, and/or any combination thereof. In an
example, the hosts 110(1-N) connect to the SP 120 using
various technologies, such as Fibre Channel, iSCSI, NFS,
SMB 3.0, and CIFS, for example. Any number of hosts
110(1-N) may be provided, using any of the above protocols,
some subset thereof, or other protocols besides those shown.
As is known, Fibre Channel and iSCSI are block-based
protocols, whereas NFS, SMB 3.0, and CIFS are file-based
protocols. The SP 120 is configured to receive 1O requests
112(1-N) in transmissions from the hosts 110(1-N) accord-
ing to both block-based and file-based protocols and to
respond to such 10 requests 112(1-N) by reading or writing
the storage 180.

The SP 120 is seen to include one or more communication
interfaces 122, control circuitry (e.g., a set of processors
124), and memory 130. The communication interfaces 122
include, for example, adapters, such as SCSI target adapters
and network interface adapters, for converting electronic
and/or optical signals received from the network 114 to
electronic form for use by the SP 120. The set of processors
124 includes one or more processing chips and/or assem-
blies. In a particular example, the set of processors 124
includes numerous multi-core CPUs. The memory 130
includes both volatile memory (e.g., RAM), and non-volatile
memory, such as one or more ROMs, disk drives, solid state
drives (SSDs), and the like. The set of processors 124 and
the memory 130 are constructed and arranged to carry out
various methods and functions as described herein. Also, the
memory 130 includes a variety of software constructs real-
ized in the form of executable instructions. When the
executable instructions are run by the set of processors 124,
the set of processors 124 are caused to carry out the

US 9,424,117 Bl

7

operations of the software constructs. Although certain soft-
ware constructs are specifically shown and described, it is
understood that the memory 130 typically includes many
other software constructs, which are not shown, such as
various applications, processes, and daemons.

As shown, the memory 130 includes an operating system
134, such as Unix, Linux, or Windows™, for example. The
operating system 134 includes a kernel 136. The memory
130 is further seen to include a container 132. In an example,
the container 132 is a software process that provides an
isolated userspace execution context within the operating
system 134. In various examples, the memory 130 may
include multiple containers like the container 132, with each
container providing its own isolated userspace instance.
Although containers provide isolated environments that do
not directly interact (and thus promote fault containment),
different containers can be run on the same kernel 136 and
can communicate with one another using inter-process com-
munication (IPC) mediated by the kernel 136. Containers
are well-known features of Unix, Linux, and other operating
systems.

In the example of FIG. 1, only a single container 132 is
shown. Running within the container 132 is an 1O stack 140
and multiple virtualized storage processors (VSPs) 150(1-3).
The IO stack 140 provides an execution path for host 10s
(e.g., 112(1-N)) and includes a front end 142 and a back end
144. The VSPs 150(1-3) each run within the container 132
and provide a separate context for managing host data. In an
example, each VSP manages a respective set of host file
systems and/or other data objects and uses servers and
settings for communicating over the network 114 with its
own individual network identity. Although three VSPs are
shown, it is understood that the SP 120 may include as few
as one VSP or as many VSPs as the computing resources of
the SP 120 and storage resources of the storage 180 allow.

Although the VSPs 150(1-3) each present an independent
and distinct identity, it is evident that the VSPs 150(1-3) are
not, in this example, implemented as independent virtual
machines. Rather, all VSPs 150(1-3) operate in userspace
and employ the same kernel 136 of the SP 120. Although it
is possible to implement the VSPs 150(1-3) as independent
virtual machines (each including a virtualized kernel), it has
been observed that VSPs perform faster when the kernel 136
is not virtualized.

Also, it is observed that the VSPs 150(1-3) all run within
the container 132, i.e., within a single userspace instance.
Again, the arrangement shown reflects a deliberate design
choice aimed at optimizing VSP performance. It is under-
stood, though, that alternative implementations could pro-
vide different VSPs in different containers, or could be
provided without containers at all.

The memory 130 is further seen to store a configuration
database 170. The configuration database 170 stores system
configuration information, including settings related to the
VSPs 150(1-3) and their data objects. In other implementa-
tions, the configuration database 170 is stored elsewhere in
the data storage apparatus 116, such as on a disk drive
separate from the SP 120 but accessible to the SP 120, e.g.,
over a backplane or network.

In operation, the hosts 110(1-N) issue 1O requests 112(1-
N) to the data storage apparatus 116. The IO requests
112(1-N) may include both block-based requests and file-
based requests. The SP 120 receives the 10 requests 112(1-
N) at the communication interfaces 122 and passes the 10
requests to the 10 stack 140 for further processing.

At the front end 142 of the IO stack 140, processing
includes associating each of the 10 requests 112(1-N) with

10

15

20

25

30

35

40

45

50

55

60

65

8

a particular one of the VSPs 150(1-3). In an example, each
VSP stores a network address (e.g., an IP address) in a
designated location within its file systems. The front end 142
identifies the network address to which each 10 request is
directed and matches that address with one of the network
addresses stored with the VSPs 150(1-3). The front end 142
thus uses the network address to which each IO request is
sent to identify the VSP to which the 1O request is directed.
Further processing of the 10 request is then associated (e.g.,
tagged) with an identifier of the matching VSP, such that the
10 request is processed within a particular VSP context. Any
data logging, metrics collection, fault reporting, or messages
generated while the 1O request is being processed are stored
with the associated VSP (e.g., in a file system dedicated to
the VSP). Also, any path information provided with the 10
request (e.g., to a particular directory and file name) is
interpreted within the namespace of the identified VSP.

Processing within the front end 142 may further include
caching data provided with any write IOs and mapping host
data objects (e.g., host file systems, LUNs, vVols, VMDKs,
etc.) to underlying files stored in a set of internal file
systems. Host 1O requests received for reading and writing
both file systems and LLUNs are thus converted to reads and
writes of respective files. The 10 requests then propagate to
the back end 144, where commands are executed for reading
and/or writing the physical storage 180.

In an example, processing through the 10 stack 140 is
performed by a set of threads maintained by the SP 120 in
a set of thread pools. When an IO request is received, a
thread is selected from the set of thread pools. The 10
request is tagged with a VSP identifier, and the selected
thread runs with the context of the identified VSP. Typically,
multiple threads from different thread pools contribute to the
processing of each 10 request (there are many processing
layers). Multiple threads from the thread pools can process
multiple 10 requests simultaneously, i.e., in parallel, on the
data objects of any one VSP or multiple VSPs.

Although FIG. 1 shows the front end 142 and the back end
144 together in an “integrated” form, the front end 142 and
back end 144 may alternatively be provided on separate SPs.
For example, the 1O stack 140 may be implemented in a
“modular” arrangement, with the front end 142 on one SP
and the back end 144 on another SP. The 1O stack 140 may
further be implemented in a “gateway” arrangement, with
multiple SPs running respective front ends 142 and with a
back end provided within a separate storage array. The back
end 144 performs processing that is similar to processing
natively included in many block-based storage arrays. Mul-
tiple front ends 142 can thus connect to such arrays without
the need for providing separate back ends. In all arrange-
ments, processing through both the front end 142 and back
end 144 is preferably tagged with the particular VSP context
such that the processing remains VSP-aware.

FIG. 2 shows portions of the front end 142 in additional
detail. Here, and describing the architecture generally with-
out regard to any particular VSP, it is seen that a set of
lower-deck file systems 202 represents LUNs and host file
systems in the form of files. Any number of lower-deck file
systems 202 may be provided. In one arrangement, a single
lower-deck file system may include, as files, any number of
LUNs and/or host file systems, as well as their snaps (i.e.,
point-in-time copies). In another arrangement, a different
lower-deck file system is provided for each primary object
to be stored, e.g., for each LUN and for each host file system.
Additional arrangements provide groups of host file systems
and/or groups of LUNs together in a single lower deck file
system. The lower-deck file system for any object may

US 9,424,117 Bl

9

include a file storing the object itself, as well as files storing
any snaps of the object. Each lower-deck file system 202 has
an inode table (e.g., 232, 242), which provides a unique
inode for each file stored in the lower-deck file system. The
inode table of each lower-deck file system stores properties
of each file in the respective lower-deck file system, such as
ownership and block locations at which the file’s data are
stored. Lower-deck file systems are built upon storage
elements managed by a storage pool 204.

The storage pool 204 organizes elements of the storage
180 in the form of slices 250. A “slice” is an increment of
storage space, such as 256 MB in size, which is obtained
from the storage 180. The pool 204 may allocate slices to
lower-deck file systems 202 for use in storing their files. The
pool 204 may also deallocate slices from lower-deck file
systems 202 if the storage provided by the slices is no longer
required. In an example, the storage pool 204 creates slices
by accessing RAID groups formed from the storage 180,
dividing the RAID groups into FLUs (Flare LUNs), and
further dividing the FLU’s into slices.

Continuing with reference to the example shown in FIG.
2, a user object layer 206 includes a representation of a LUN
210 and of an HFS (host file system) 212, and a mapping
layer 208 includes a LUN-to-file mapping 220 and an
HFS-to-file mapping 222. The LUN-to-file mapping 220
maps the LUN 210 to a first file F1 (236), and the HFS-to-
file mapping 222 maps the HFS 212 to a second file F2
(246). Through the LUN-to-file mapping 220, any set of
blocks identified in the LUN 210 by a host 1O request is
mapped to a corresponding set of blocks within the first file
236. Similarly, through the HFS-to-file mapping 222, any
file or directory of the HFS 212 is mapped to a correspond-
ing set of blocks within the second file 246. The HFS 212 is
also referred to herein as an “upper-deck file system,” which
is distinguished from the lower-deck file systems 202, which
are for internal use.

In this example, a first lower-deck file system 230
includes the first file 236 and a second lower-deck file
system 240 includes the second file 246. Each of the
lower-deck file systems 230 and 240 includes an inode table
(232 and 242, respectively). The inode tables 232 and 242
provide information about files in respective lower-deck file
systems in the form of inodes. For example, the inode table
232 of the first lower-deck file system 230 includes an inode
234, which provides file-specific information about the first
file 236. Similarly, the inode table 242 of the second
lower-deck file system 240 includes an inode 244, which
provides file-specific information about the second file 246.
The information stored in each inode includes location
information (e.g., block locations) where the respective file
is stored, and may thus be accessed as metadata to identify
the locations of the files 236 and 246 in the storage 180.

Although a single file is shown for each of the lower-deck
file systems 230 and 240, it is understood that each of the
lower-deck file systems 230 and 240 may include any
number of files, each with its own entry in the respective
inode table. In one example, each lower-deck file system
stores not only the file F1 or F2 for the LUN 210 or HFS 212,
but also snaps of those objects. For instance, the first
lower-deck file system 230 stores the first file 236 along with
a different file for every snap of the LUN 210. Similarly, the
second lower-deck file system 240 stores the second file 246
along with a different file for every snap of the HFS 212.

As shown, a set of slices 260 is allocated by the storage
pool 204 for storing the first file 236 and the second file 246.
In the example shown, slices S1 through S4 are used for
storing the first file 236, and slices S5 through S7 are used

20

40

45

55

10
for storing the second file 246. The data that make up the
LUN 210 are thus stored in the slices S1 through S4,
whereas the data that make up the HFS 212 are stored in the
slices S5 through S7.

In some examples, each of the lower-deck file systems
230 and 240 is associated with a respective volume, such as
a sparse LUN. Sparse LUNs provide an additional layer of
mapping between the lower-deck file systems 202 and the
pool 204 and allow the lower-deck file systems to operate as
file systems normally do, by accessing underlying volumes.
Additional details about sparse LUNs and their relation to
lower-deck file systems may be found in U.S. Pat. No.
7,631,155, which is hereby incorporated by reference in its
entirety. The incorporated patent uses the term “container
file system” to refer to a construct similar to the lower-deck
file system disclosed herein.

Although the example of FIG. 2 shows storage of a LUN
210 and a host file system 212 in respective lower-deck file
systems 230 and 240, it is understood that other data objects
may be stored in one or more lower-deck file systems in a
similar manner. These may include, for example, file-based
vVols, block-based vVols, and VMDKs.

FIG. 3 shows an example set of components of the data
storage apparatus 116 that are associated with a particular
VSP 300 (i.e., any of the VSPs 150(1-3)). The components
shown in FIG. 3 include components that are managed in the
context of the VSP 300 and components that form the
“personality” of the VSP 300. These components may be
referred to herein as “included” within the VSP 300, by
which it is meant that the components are associated with the
VSP 300 within the data storage apparatus 116 and are not
associated with any other VSP. It is thus seen that the VSP
300 “includes” a number of lower-deck file systems hosting
various host data objects, as well as internal data objects.

For example, the VSP 300 includes a first lower-deck file
system 310 and a second lower-deck file system 320. The
first lower-deck file system 310 includes a file FA, which
provides a file representation of a first host file system 312.
Similarly, the second lower-deck file system 320 includes a
file FB, which provides a file representation of a second host
file system 322. The host file systems 312 and 322 are
upper-deck file systems, which may be made available to
hosts 110(1-N) for storing file-based host data. HFS-to-file
mappings, like the HFS-to-file mapping 222, are understood
to be present (although not shown in FIG. 3) for expressing
the files FA and FB in the form of upper-deck file systems.
Although only two host file systems 312 and 322 are shown,
it is understood that the VSP 300 may include any number
of host file systems. In an example, a different lower-deck
file system is provided for each host file system. The
lower-deck file system stores the file representation of the
host file system, and, if snaps are turned on, any snaps of the
host file system. In a similar manner to that described in
connection with FIG. 2, each of the lower-deck file systems
310 and 320 includes a respective inode table, allowing the
files FA and FB and their snaps to be indexed within the
respective lower-deck file systems and accessed within the
storage 180.

In some examples, the VSP 300 also includes one or more
lower-deck file systems for storing file representations of
LUNSs. For example, a lower-deck file system 330 stores a
file FC, which provides a file representation of a LUN 332.
A LUN-to-file mapping (not shown but similar to the
mapping 320) expresses the file FC in the form of a LUN,
which may be made available to hosts 110(1-N) for storing
block-based host data. In an example, the lower-deck file

US 9,424,117 Bl

11

system 330 stores not only the file FC, but also snaps
thereof, and includes an inode table in essentially the manner
described above.

The VSP 300 further also includes a lower-deck file
system 340. In an example, the lower-deck file system 340
stores file representations FD and FE of two internal file
systems of the VSP 300—a root file system 342 and a
configuration file system 344. In an alternative arrangement,
the files FD and FE are provided in different lower-deck file
systems. In an example, the lower-deck file system 340 also
stores snaps of the files FD and FE, and files are accessed
within the lower-deck file system 340 via file system-to-file
mappings and using an inode table, substantially as
described above.

In an example, the root file system 342 has a root
directory, designated with the slash (*/”), and sub-directories
as indicated. Any number of sub-directories may be pro-
vided within the root file system in any suitable arrangement
with any suitable file structure; the example shown is merely
illustrative. As indicated, one sub-directory (“Local”) stores,
for example, within constituent files, information about the
local environment of the SP, such as local IP sub-net
information, geographical location, and so forth. Another
sub-directory (“Rep”) stores replication information, such as
information related to any ongoing replication sessions.
Another sub-directory (“Cmd Svc¢”) stores command service
information, and yet another sub-directory (“MPs”) stores
mount points.

In the example shown, the directory “MPs” of the root file
system 342 provides mount points (e.g., directories) on
which file systems are mounted. For example, the host file
systems 312 and 322 are respectively mounted on mount
points MP1 and MP2, and the configuration file system 344
is mounted on the mount point MP3. In an example, estab-
lishment of the mount points MP1-MP3 and execution of the
mounting operations for mounting the file systems 312, 322,
344 onto the mount points MP1-MP4 are provided in a batch
file stored in the configuration file system 344 (e.g., in Host
Objects). It is understood that additional mount points may
be provided for accommodating additional file systems.

The root file system 342 has a namespace, which includes
the names of the root directory, sub-directories, and files that
belong to the root file system 342. The file systems 312, 322,
and 344 also each have respective namespaces. The act of
mounting the file systems 312, 322, and 344 onto the mount
points MP1, MP2, and MP3 of the root file system 342
serves to join the namespace of each of the file systems 312,
322, and 344 with the namespace of the root file system 342,
to form a single namespace that encompasses all the file
systems 312, 322, 342, and 344. This namespace is specific
to the VSP 300 and is independent of namespaces of any
other VSPs.

Also, it is understood that the LUN 332 is also made
available to hosts 110(1)-110(N) through the VSP 300. For
example, hosts 110a-# can send read and write IO requests
to the LUN 332 (e.g., via Fibre Channel and/or iSCSI
commands) and the SP 120 services the requests for the VSP
300, e.g., by operating threads tagged with the context of the
VSP 300. Although FIG. 3 shows both the LUN 322 and the
host file systems 312 and 322 together in a single VSP 300,
other examples may provide separate VSPs for LUNs and
for file systems.

Although the VSP 300 is seen to include file systems and
LUNs, other host objects may be included, as well. These
include, for example, file-based vVols, block-based vVols,

15

20

40

45

55

60

12

and VMDKs. Such host objects may be provided as file
representations in lower-deck file systems and made avail-
able to hosts (1)-110(N).

As its name suggests, the configuration file system 344
stores configuration settings for the VSP 300. These settings
include settings for establishing the “personality” of the VSP
300, i.e., the manner in which the VSP 300 interacts over the
network 114. Although the configuration file system 344 is
shown with a particular directory structure, it is understood
that any suitable directory structure can be used. In an
example, the configuration file system 344 stores the fol-
lowing elements:

IF ConFIG. Interface configuration settings of any net-
work interface used for processing 1O requests and
tagged with a context of the VSP 300. IF Config
includes the IP address of the VSP, as well as related
network information, such as sub-masks and related 1P
information.

CIFS. Configuration settings and names of one or more
CIFS servers used in the context of the VSP 300. The
CIFS servers manage 10 requests provided in the CIFS
protocol. By including the CIFS configuration within
the configuration file system 344, the CIFS configura-
tion becomes part of the VSP 300 itself and remains
with the VSP 300 even as the VSP 300 is moved from
one SP to another SP. This per-VSP configuration of
CIFS also permits each VSP to have its own custom-
ized CIFS settings, which may be different from the
settings of CIFS servers used by other VSPs.

NFS. Configuration settings and names of one or more
NEFS servers used in the context of the VSP 300. The
NFS servers manage 1O requests provided in the NFS
protocol. By including the NFS configuration within
the configuration file system 344, the NFS configura-
tion becomes part of the VSP 300 itself and remains
with the VSP 300 even as the VSP 300 is moved from
one SP to another SP. This per-VSP configuration of
NFS also permits each VSP to have its own customized
NFS settings, which may be different from the settings
of NFS servers used by other VSPs.

Exports. NFS exports, CIFS shares, and the like for all
supported protocols. For security and management of
host access, users are typically given access only to
specified resources mounted to the root file system 342,
e.g., host file systems, sub-directories of those file
systems, and/or particular LUNs. Access to these
resources is provided by performing explicit export/
share operations, which expose entry points to the
resources for host access. In an example, these export/
share operations are included within one or more batch
files, which may be executed when the VSP 300 is
started. Exports are typically VSP-specific, and depend
upon the particular data being hosted and the access
required.

CAVA/NDMP: CAVA (Celerra Anti-Virus Agent) con-
figuration file, including location of external server for
performing virus checking operations. NDMP (Net-
work Data Management Protocol) provides backup
configuration information. CAVA and NDMP settings
are configurable on a per-VSP basis.

NIS/DNS/LDAP: Local configurations and locations of
external servers for providing resolution of IP
addresses. NIS (Network Information Service), DNS
(Directory Name System), and LDAP (Lightweight
Directory Access Protocol) settings are configurable on
a per-VSP basis. The DNS configuration stores local

US 9,424,117 Bl

13

host name and domain name of the VSP 300, as well as
the location of a DNS server for resolving host names.

Host Objects: Identifiers for all host file systems (e.g., 312
and 322), LUNSs (e.g., LUN 332), and other host objects
included within the VSP 300. Host objects may also
include batch files and/or lists of instructions for estab-
lishing mount points in the root file system 342 and for
mounting the host file system(s) and LUN(s) to the
mount points.

Parameters: Low-level settings (e.g., registry settings) for
configuring VSP 300. These include cache settings and
settings for specifying a maximum number of threads
running on the SP 120 that may be used to service 10
requests within the context of the VSP 300. Parameters
are configurable on a per-VSP basis.

Statistics: Metrics, log files, and other information per-
taining to activities within the context of the VSP 300.
Statistics are updated as they accumulate.

Many configuration settings are established at startup of the
VSP 300. Some configuration settings are updated as the
VSP 300 is operated. The configuration file system 344
preferably does not store host data.

Although FIG. 3 has been shown and described with
reference to a particular VSP 300, it is understood that all of
the VSPs 150(1-3) may include a root file system, a con-
figuration file system, and at least one host file system or
LUN, substantially as shown. Particular host objects and
configuration settings differ, however, from one VSP to
another.

By storing the configuration settings of VSPs within the
file systems of the VSPs themselves and providing a unique
namespace for each VSP, VSPs are made to be highly
independent, both of other VSPs and of the particular SPs on
which they are provided. For example, migrating a VSP
from a first data storage system to a second data storage
system involves copying its lower-deck file systems (or
some subset thereof) from a source SP on the first data
storage system to a target SP on the second, starting the
VSP’s servers on the target SP in accordance with the
configuration settings, and resuming operation on the target
SP. As the paths for accessing data objects on VSPs are not
rooted to the SPs on which they are run, hosts may often
continue to access migrated VSPs using the same instruc-
tions as were used prior to moving the VSPs. Similar
benefits can be enjoyed when moving a VSP from one SP to
another SP in the same data storage system. To move a VSP
from a first SP to a second SP, The VSP need merely be shut
down (i.e., have its servers stopped) on the first SP and
resumed (i.e., have its servers started up again) on the
second SP.

FIG. 4 shows an example record 400 of the configuration
database 170, which are used to define a particular VSP
having a VSP identifier (ID) 410. The VSP ID 410 may
identify one of the VSPs 150(1-3) or some other VSP of the
data storage apparatus 116. The record 400 specifies, for
example, an owning SP (physical storage processor),
authentication, and identifiers of the data objects associated
with the listed VSP. The data object identifiers include
identifiers of the root file system, configuration file system,
and various host file systems (or other host objects) that may
be accessed in the context of the listed VSP. The record 400
may also identify the lower-deck file system used to store
each data object. The record 400 may further specify host
interfaces that specify 10 protocols that the listed VSP is
equipped to handle.

Although FIG. 4 shows only a single record 400 for a
single VSP, it is understood that the configuration database

10

15

20

25

30

35

40

45

50

55

60

65

14

170 may store records, like the record 400, for any number
of VSPs, including all VSPs of the data storage apparatus
116. During start-up of the data storage apparatus 116, or at
some other time, a computing device of the data storage
apparatus 116 reads the configuration database 170 and
launches a particular VSP or a group of VSPs on the
identified SPs. As a VSP is starting, the SP that owns the
VSP reads the configuration settings of the configuration file
system 344 to configure the various servers of the VSP and
to initialize its communication protocols. The VSP may then
be operated on the identified SP, i.e., the SP may then be
operated with the particular VSP’s context.

It is understood that VSPs 150(1-3) operate in connection
with the front end 142 of the IO stack 140. The VSPs
150(1-3) thus remain co-located with their respective front
ends 142 in modular and gateway arrangements.

FIGS. 5A and 5B show two different example arrange-
ments of VSPs. In FIG. 5A, the VSPs 150(1-3) access the
storage pool 204. Thus, the lower-deck file systems of the
VSPs 150(1-3) all derive the slices needed to store their
underlying file systems and other data objects from the pool
204. In FIG. 5B, multiple storage pools 550(1-3) are pro-
vided, one for each of the VSPs 150(1-3), respectively.
Providing different pools for respective VSPs promotes data
isolation among the VSPs, and may be better suited for
applications involving multiple tenants in which each ten-
ant’s data must be kept separate from the data of other
tenants.

FIG. 6 shows an example method 600 for managing host
data on a data storage apparatus connected to a network. The
method 600 that may be carried out in connection with the
data storage apparatus 116. The method 600 is typically
performed by the software constructs, described in connec-
tion with FIGS. 1-3, which reside in the memory 130 of the
storage processor 120 and are run by the set of processors
124. The various acts of the method 600 may be ordered in
any suitable way. Accordingly, embodiments may be con-
structed in which acts are performed in orders different from
those illustrated, which may include performing some acts
simultaneously, even though the acts are shown as sequential
in the illustrated embodiments.

At step 610, a network address and a set of host data
objects are stored in a data storage apparatus. The set of host
data objects are accessible within a namespace of a virtu-
alized storage processor (VSP) operated by a physical
storage processor of the data storage apparatus. The
namespace includes only names of objects that are specific
to the VSP. For example, an IP address of the VSP 300 is
stored in a file of a directory of the configuration file system
344. The VSP 300 runs on the SP 120 of the data storage
apparatus 116. A set of host objects, including host file
systems 312 and 322, and LUN 332, are also stored in the
data storage apparatus 116. These host objects are made
accessible within the namespace of the VSP 300 by mount-
ing these data objects to mount points MP1-MP4 within the
root file system 342 and thus merging their namespaces with
that of the root file system 342. The resulting merged
namespace includes only names of objects that are specific
to the VSP 300.

At step 612, a transmission is received by the physical
storage processor over the network from a host computing
device. The transmission is directed to a network address
and includes an 10O request designating a pathname to a host
data object to be written or read. For example, the SP 120
receives a transmission over the network 114 from one of the
hosts 110(1-N). The transmission is directed to a particular
IP address and includes an 1O request (e.g., one of 112(1-

US 9,424,117 Bl

15

N)). The IO request designates a location of a host data
object to be written or read (e.g., a pathname for a file-based
object or a block designation for a block-based object). The
location may point to any of the host file systems 312 or 322,
to the LUN 332, or to any file or offset range accessible
through the host file systems 312 or 322 or the LUN 332,
respectively. The location may also point to a vVol or
VMDK, for example, or to any other object which is part of
the namespace of the VSP 300.

At step 614, the host data object designated by the 10
request is identified by (i) matching the network address to
which the transmission is directed with the network address
stored for the VSP, to identify the VSP as the recipient of the
10 request, and (ii) locating the host data object within the
namespace of the VSP using the pathname. For example,
each of the VSPs 150(1-3) stores an IP address in its
configuration file system 344. When an IO request is
received, an interface running within the front end 142 of the
10 stack 140 checks the IP address to which the 1O request
is directed and matches that IP address with one of the IP
addresses stored for the VSPs 150(1-3). The VSP whose IP
address matches the IP address to which the 1O request is
directed is identified as the recipient of the 1O request. The
10 request arrives to the SP 120 with a pathname to the host
data object to be accessed. The front end 142 looks up the
designated pathname within the identified VSP to identify
the particular data object to which the 1O request is directed.

At step 616, the IO request is processed to complete the
requested read or write operation on the identified host data
object. For example, the front end 142 and the back end 144
process the 1O request to perform an actual read or write to
the designated host data object on the storage 180.

An improved technique has been described for managing
host data in a data storage apparatus. The technique provides
virtualized storage processors (VSPs) as substantially self-
describing and independent entities. Each VSP has its own
namespace, which is independent of the namespace of any
other VSP. Each VSP also has its own network address.
Hosts may thus access VSPs directly, without having to
include path information relative to the SP on which the VSP
is operated. VSPs can thus be moved from one physical SP
to another with little or no disruption to hosts, which may
continue to access the VSPs on the new SPs using the same
paths as were used when the VSPs were running on the
original SPs.

As used throughout this document, the words “compris-
ing,” “including,” and “having” are intended to set forth
certain items, steps, elements, or aspects in an open-ended
fashion. Also, and unless explicitly indicated to the contrary,
the word “set” as used herein indicates one or more of
something. Although certain embodiments are disclosed
herein, it is understood that these are provided by way of
example only and the invention is not limited to these
particular embodiments.

Having described certain embodiments, numerous alter-
native embodiments or variations can be made. For example,
embodiments have been shown and described in which host
file systems, LUNs, vVols, VMDKs, and the like are pro-
vided in the form of files of underlying lower-deck file
systems. Although this arrangement provides advantages for
simplifying management of VSPs and for unifying block-
based and file-based operations, the use of lower-deck file
systems is merely an example. Indeed, host file systems,
LUNSs, vVols, VMDKs, and the like may be provided for
VSPs in any suitable way.

Also, although the VSPs 150(1-3) are shown and
described as userspace constructs that run within the con-

20

40

45

50

65

16

tainer 132, this is also merely an example. Alternatively,
different VSPs may be provided in separate virtual machines
running on the SP 120. For example, the SP 120 is equipped
with a hypervisor and a virtual memory manager, and each
VSP runs in a virtual machine having a virtualized operating
system.

Also, the improvements or portions thereof may be
embodied as a non-transient computer-readable storage
medium, such as a magnetic disk, magnetic tape, compact
disk, DVD, optical disk, flash memory, Application Specific
Integrated Circuit (ASIC), Field Programmable Gate Array
(FPGA), and the like (shown by way of example as medium
650 in FIG. 6). Multiple computer-readable media may be
used. The medium (or media) may be encoded with instruc-
tions which, when executed on one or more computers or
other processors, implement the various methods described
herein. Such medium (or media) may be considered an
article of manufacture or a machine, and may be transport-
able from one machine to another.

VSP Failover Details

FIGS. 7 and 8 illustrate VSP failover among two physical
SPs 120(A), 120(B) (collectively, physical SPs 120) of a
data storage apparatus 116 by way of example (also see FIG.
1). FIG. 7 shows the two physical SPs 120 at a first operating
time, T1, just prior to failover. FIG. 8 shows the two physical
SPs 120 at a second operating time, T2, after the first
operating time, T1, i.e., after failover.

By way of example only, there is a storage pool 204, a
user interface 800, and a configuration database 170. The
storage pool 204 is formed from a set of storage units and,
as mentioned earlier, contains a set of lower deck file
systems 202 (also see FIG. 2). The user interface 800 takes
input from and provides output to a user (e.g., an adminis-
trator) and may take the form of a user workstation or
terminal in communication with the processing circuitry
(i.e., the physical SPs 120) of the data storage apparatus 116
to provide the user with a command line interface or GUIL.

As shown in FIG. 7, the storage pool 204 provides storage
for VSPs 150(A)(1), 150(A)(2) which are owned by the
physical SP 120(A). In particular, a lower-deck file 802(A)
(1) contains a VSP configuration file system 344(A)(1)
which defines a personality for the VSP 150(A)(1) (also see
FIG. 3). Similarly, another lower-deck file 802(A)(2) con-
tains another VSP configuration file system 344(A)(2) which
defines a personality for the VSP 150(A)(2).

Additionally and as shown in FIG. 7, a lower-deck file
804(A)(1) contains a host file system 806(A)(1) for use by
a host. Similarly, another lower-deck file 804(A)(2) contains
another host file system 806(A)(2) for use by a host. The
personalities, or operating environments in which the host
file systems 806(A)(1), 806(A)(2) reside, are defined by the
VSP configuration file systems 344(A)(1), 344(A)(2),
respectively. Recall that the VSP configuration file systems
344 and host file systems 806 are mounted to the respective
root file systems (or root structures) of the VSPs 150 (see
dashed lines in FIGS. FIGS. 7 and 8, and also see FIG. 3).

Furthermore and as shown in FIG. 7, the storage pool 204
further provides storage for a VSP 150(B)(1) which is
owned by the physical SP120(B). In particular, a lower-deck
file 802(B)(1) contains a VSP configuration file system
344(B)(1) which defines a personality for the VSP 150(B)
(1), and a lower-deck file 804(B)(1) contains a host file
system 806(B)(1) for use by a host. Again, the VSP con-
figuration file system 344(B)(1) and the host file system
806(B)(1) are mounted to the root file system of the VSP
150(B)(1).

US 9,424,117 Bl

17

It should be understood that the configuration database
170 includes a set of records 400 (also see FIG. 4) which is
used to manage and track ownership of various constructs/
objects of the data storage apparatus 116. Along these lines,
the configuration database 170 indicates, for each VSP 150,
a particular physical SP 120 that owns that VSP 150.
Likewise, the configuration database 170 indicates, for each
lower-deck file 802, 804, a particular VSP 150 that owns that
that lower-deck file 802, 804 (i.e., the particular VSP to
which that lower-deck file 802, 804 is mounted), and so on.

In this example, the physical SP 120(A) owns VSPs
150(A)(1), 150(A)(2). Similarly, the physical SP 120(B)
owns VSP 150(B)(1).

During operating time T1 which is prior to failover (FIG.
7), it should be understood that the physical SP 120(A)
processes host input/output (I/O) requests directed to the
host file systems 806(A)(1), 806(A)(2) which are mounted
to the VSPs 150(A)(1), 150(A)(2), respectively. Similarly,
the physical SP 120(B) processes host 1/O requests directed
to the host file system 806(B)(1) which is mounted to the
VSP 150(B)(1).

Now, suppose that the physical SP 120(A) enters a failure.
Examples for such a failure include a hardware failure or a
software failure that prevents the physical SP 120(A) from
properly processing further host /O requests. At this point,
physical SP 120(B) takes over the VSPs 150(A)(1), 150(A)
(2) owned by failed physical SP 120(A) on behalf of failed
physical SP 120(A). That is, the VSPs 150(A)(1), 150(A)(2)
owned by failed physical SP 120(A) are trespassed on to
healthy physical SP 120(B).

It should be understood that are variety of mechanisms are
capable of detecting the failure of physical SP 120(A). For
instance, physical SP 120(A) could be completely unrespon-
sive and physical SP 120(B) considers physical SP 120(A)
to have failed due to lost contact, e.g., loss of a heartbeat
signal, timeout of communications, etc. Alternatively, the
physical SP 120(A) may be able to still communicate and
thus signal the physical SP 120(B) that it has failed in some
manner and that the physical SP 120(B) must failover the
VSPs 150(A)(1), 150(A)(2) for high/continuous availability
purposes, and so on.

In response to detecting the failure of the physical SP
120(A), the physical SP 120(B) takes control of the VSPs
150(A)(1), 150(A)(2). In particular, the physical SP 120(B)
accesses the records 400 of the configuration database 170
(also see FIG. 4) to determine which VSPs 150 list the
physical SP 120(A) as their primary owner. The physical SP
120(B) then identifies the VSP root file systems of these
VSPs 150 and identifies which file systems were mounted to
these VSP root file systems.

The physical SP 120(B) then takes control of the identi-
fied VSPs 150 which in the example are VSPs 150(A)(1),
150(A)(2) (illustrated by the arrows 808(1), 808(2) in FIG.
7). Along these lines, the physical SP 120(A) may need to
un-mount the upper-deck file systems that are mounted to
the root file systems of the VSPs 150(A)(1), 150(A)(2),
namely, VSP configuration file systems 344(A)(1), 344(A)
(2) and host file systems 806(A)(1), 806(A)(2). Additionally,
the physical SP 120(B) fix aspects of the lower deck files
802, 804 containing these upper-deck file systems, e.g.,
close/unlock/etc. the files, adjust metadata/configuration
data associated with the files, and so on. Additionally, the
physical SP 120(B) may attempt to retrieve any queued or
uncompleted /O requests.

Next and as illustrated in FIG. 8, the physical SP 120(B)
obtains control of the VSP root file system of the VSPs
150(A)(1), 150(A)(2) and the lower-deck files 802(A)(1),

10

15

20

25

30

35

40

45

50

55

60

65

18

804(A)(1), 802(A)(2), 804(A)(2). Once the physical SP
120(B) is able to fully access these lower-deck files, the
physical SP 120(B) mounts the VSP configuration file sys-
tem 344(A)(1) and host file system 806(A)(1) to the VSP
root file system of the VSP 150(A)(1), and mounts the VSP
configuration file system 344(A)(2) and host file system
806(A)(2) to the VSP root file system of the VSP 150(A)(2)
(also see FIG. 3).

It should be understood that such operation takes place
even though, according to the records of the configuration
database 170, the physical SP 120(A) still owns the VSPs
150(A)(1), 150(A)(2). That is, although the physical SP
120(B) may temporarily own the VSPs 150(A)(1), 150(A)
(2), the physical SP 120(A) still remains the primary owner
of the VSPs 150(A)(1), 150(A)(2) and the configuration
database 170 continues to reflect this.

In some arrangements, the physical SP 120(B) updates the
configuration database 170 to indicate that it is a temporary
owner, but not the primary owner, of the VSPs 150(A)(1),
150(A)(2). Accordingly, if the physical SP 120(B) were to
fail, the configuration database 170 would indicate that the
physical SP 120(B) had access to the VSPs 150(A)(1),
150(A)(2) prior to the failure.

FIG. 8 shows the load balanced situation at operating time
T2 following operating time T1. Here, the VSPs 150(A)(1),
150(A)(2) have successtully failed over from the physical
SP 120(A) to the physical SP 120(B). Accordingly, the
remaining physical SP 120(B) now processes host 1/O
requests directed to the host file systems 806(A)(1), 806(A)
(2), 806(B)(1) which are mounted to the VSPs 150(A)(1),
150(A)(2), 150(B)(1), respectively.

It should be understood that movement of the VSP
configuration and host file systems was not required during
failover. Rather, these upper-deck file systems were simply
re-mounted to the VSP following movement of only VSP
root objects from the physical SP 120(A) to the physical SP
120(B).

At this point, it should be understood that failback may be
effectuated via a user command 810 or automatically. Along
these lines, the data storage apparatus 116 may be precon-
figured to wait until the user enters a failback command 810
before the data storage apparatus 116 restores VSPs 150 to
their owner physical SPs 120. Alternatively, the data storage
apparatus 116 may be preconfigured to automatically restore
VSPs 150 to their owner physical SPs 120 upon detection
that a failed physical SP 120 is available again (e.g., for a
software issue, the failed physical SP 120 may simply reboot
which may take just a few minutes).

During failback, the processing circuitry of the data
storage apparatus 116 performs a failback operation to
enable the primary owner physical SP 120 to re-access the
VSPs 150 (i.e., the physical SP 120(A) in FIGS. 7 and 8). In
particular, the physical SP 120(B) un-mounts the VSP
configuration file systems 344(A)(1), 344(A)(2) and the host
file systems 806(A)(1), 806(A)(2) from the root file systems
of the trespassing VSPs 150(A)(1), 150(A)(2), and relin-
quishes control of their root file systems. Subsequently, the
physical SP 120(A) obtains control of the root file systems
of'the VSPs 150(A)(1), 150(A)(2) and re-mounting the VSP
configuration file systems 344(A)(1), 344(A)(2) and the host
file systems 806(A)(1), 806(A)(2) to the root file systems.

As part of the failback operation, the physical SP 120(A)
updates the configuration database 170 indicate that the
physical SP 120(B) no longer temporarily owns the VSPs
150(A)(1), 150(A)(2). In particular, the physical SP 120(A)
is both the primary owner and the current owner of the VSPs
150(A)(1), 150(A)(2). Now that the failback operation has

US 9,424,117 Bl

19
been completed, the physical SP 120(A) re-accesses the
VSPs 150(A)(1), 150(A)(2) to create the operating environ-
ments for processing host I/O requests to the host file
systems 806(A)(1), 806(A)(2), respectively.

It should be understood that, in some arrangements, the
physical SPs 120 simultaneously failover both file-based
operations and block-based operations. That is, the physical
SPs 120 concurrently trespass a set of block-based data
objects with file-based data objects. Such operation is avail-
able when the physical SPs 120 share a common framework
for handling failover.

FIG. 9 is a flowchart of a procedure 900 which is
performed by the data storage apparatus 116 for VSP
failover. At 902, a first physical storage processor 120
accesses a VSP to create an operating environment for a host
file system from the first physical storage processor. During
this time, the first physical storage processor 120 normally
processes host /O requests on the host file system (e.g., see
the physical SP 120(A) in FIG. 7).

At 904, a second physical storage processor 120 detects a
failure of the first physical storage processor 120. For
example, the first physical storage processor 120 may have
experienced a software malfunction or a hardware failure
preventing the first physical storage processor 120 from
continuing to process host I/O requests on the host file
system.

At 906, the second physical storage processor 120
accesses the VSP in response to detecting the failure of the
first physical storage processor. With such access, the second
physical storage processor re-creates the operating environ-
ment for the host file system from the second physical
storage processor. During this time, the second physical
storage processor 120 processes host I/O requests on the
host file system (e.g., see the physical SP 120(B) in FIG. 8).

As described above, improved techniques are directed to
performing VSP failover in a manner similar to that of a
trespass model for block-based failover. Along these lines,
access to a VSP 150 (i.e., a VSP configuration file system)
which is used to create an operating environment for a host
file system is moved from a failed physical SP 120 to a
healthy physical SP 120. The healthy physical SP 120 then
accesses the VSP 150 to recreate the operating environment
for the host file system. Such failover operation takes place
even though the failed physical storage processor 120 may
continue to be identified as the primary owner of the VSP
150 (i.e., even though the VSP 150 has been trespassed on
to the healthy physical SP 120). Accordingly, such VSP
failover enables file and block failover to share a common
framework thus alleviating the need to support block-based
and file-based access to host data using two very different
failover models. While various embodiments of the present
disclosure have been particularly shown and described, it
will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the present disclosure
as defined by the appended claims.

Further, although features are shown and described with
reference to particular embodiments hereof, such features
may be included in any of the disclosed embodiments and
their variants. Thus, it is understood that features disclosed
in connection with any embodiment can be included as
variants of any other embodiment, whether such inclusion is
made explicit herein or not. Those skilled in the art will
therefore understand that various changes in form and detail
may be made to the embodiments disclosed herein without
departing from the scope of the disclosure. Such modifica-

5

10

15

20

25

30

35

40

45

50

55

60

65

20

tions and enhancements are intended to belong to various
embodiments of the disclosure.

What is claimed is:

1. In a data storage apparatus, a method of performing
virtual storage processor failover, the method comprising:

accessing, by a first physical storage processor of the data

storage apparatus, a virtual storage processor (VSP) to
create an operating environment for a host file system
from the first physical storage processor;

after accessing the VSP to create the operating environ-

ment for the host file system from the first physical
storage processor, detecting a failure of the first physi-
cal storage processor; and
in response to detecting the failure of the first physical
storage processor, accessing, by a second physical
storage processor of the data storage apparatus, the
VSP to re-create the operating environment for the host
file system from the second physical storage processor;

wherein accessing the VSP to create the operating envi-
ronment for the host file system includes processing a
first set of commands from a host computer to write
host data into a set of storage locations of a set of
storage devices; and

wherein accessing the VSP to re-create the operating

environment for the host file system includes process-
ing a second set of commands from the host computer
to read the host data from the same set of storage
locations of the same set of storage devices.

2. Amethod as in claim 1 wherein the VSP includes a VSP
configuration file system which stores data defining the
operating environment for the host file system; and

wherein accessing the VSP by the first physical storage

processor further includes controlling a root file system
of the VSP and mounting the VSP configuration file
system and the host file system to the root file system
of the VSP by the first physical storage processor to
access the VSP configuration file system and the host
file system from the first physical storage processor.

3. A method as in claim 2 wherein accessing the VSP by
the second physical storage processor further includes:

controlling the root file system of the VSP and mounting

the VSP configuration file system and the host file
system to the root file system of the VSP by the second
physical storage processor to access the VSP configu-
ration file system and the host file system from the
second physical storage processor.

4. A method as in claim 3 wherein accessing the VSP by
the first physical storage processor further includes process-
ing, by the first physical storage processor, host input/output
(I/0) requests on the host file system; and

wherein accessing the VSP by the second physical storage

processor further includes processing, by the second
physical storage processor, host 1/O requests on the
host file system.

5. A method as in claim 2 wherein the first physical
storage processor is considered a primary owner of the VSP
within the data storage apparatus; and wherein accessing the
VSP by the second physical storage processor of the data
storage apparatus further includes:

providing the operating environment for the host file

system from the second physical storage processor
while the first physical storage processor remains con-
sidered the primary owner of the VSP.

6. A method as in claim 5 wherein the data storage
apparatus includes a configuration database containing a set
of records which indicate that the first physical storage
processor is considered the primary owner of the VSP; and

US 9,424,117 Bl

21

wherein providing the operating environment for the host
file system from the second physical storage processor
includes:
maintaining the set of records contained within the con-
figuration database to continue to indicate that the first
physical storage processor is considered the primary
owner of the VSP while the second physical storage
processor accesses the VSP.
7. A method as in claim 2, further comprising:
after the second physical storage processor accesses the
VSP to re-create the operating environment for the host
file system from the second physical storage processor,
detecting restored availability of the first physical stor-
age processor, and
after detecting restored availability of the first physical
storage processor, performing a failback operation to
re-access the VSP, by the first physical storage proces-
sor of the data storage apparatus, to re-create the
operating environment for the host file system from the
first physical storage processor.
8. A method as in claim 7 wherein performing the failback
operation is carried out in response to a user entered com-
mand to failback the VSP from the second physical storage
processor to the first physical storage processor.
9. A method as in claim 7 wherein performing the failback
operation is carried out automatically upon detection of
restored availability of the first physical storage processor.
10. A method as in claim 7 wherein performing the
failback operation includes:
relinquishing control of the root file system of the VSP
and un-mounting the VSP configuration file system and
the host file system from the root file system of the VSP
by the second physical storage processor, and

subsequently obtaining control of the root file system of
the VSP and re-mounting the VSP configuration file
system and the host file system to the root file system
of the VSP by the first physical storage processor.

11. A method as in claim 10, further comprising:

after the failback operation has been completed, re-ac-

cessing the VSP by the first physical storage processor
to process host 1/0 requests on the host file system by
the first physical storage processor.

12. A method as in claim 1, further comprising:

in response to the detected failure of the first physical

storage processor, trespassing, by the second physical
storage processor of the data storage apparatus, a set of
block-based data objects to the second physical storage
processor to concurrently failover file-based host data
access and block-based host data access from the first
physical storage processor to the second physical stor-
age processor.

13. A method as in claim 1 wherein processing the first set
of commands includes operating the VSP on the first physi-
cal storage processor;

wherein processing the second set of commands includes

operating the VSP on the second physical storage
processor; and

wherein the first second physical storage processor has a

first network address, the second physical storage pro-
cessor has a second network address, and the VSP has
a third network address that is different from the first
and second network addresses to provide host access to
multiple source data objects via the third network
address.

14. A computer program product having a non-transitory
computer readable medium which stores a set of instructions
to perform virtual storage processor (VSP) failover, the set

10

15

20

25

30

35

40

45

50

55

65

22

of instructions, when carried out by computerized circuitry,
causing the computerized circuitry to perform a method of:
accessing, by a first physical storage processor of the
computerized circuitry, a VSP to create an operating
environment for a host file system from the first physi-

cal storage processor;

after accessing the VSP to create the operating environ-

ment for the host file system from the first physical
storage processor, detecting a failure of the first physi-
cal storage processor; and
in response to detecting the failure of the first physical
storage processor, accessing, by a second physical
storage processor of the computerized circuitry, the
VSP to re-create the operating environment for the host
file system from the second physical storage processor;

wherein accessing the VSP to create the operating envi-
ronment for the host file system includes processing a
first set of commands from a host computer to write
host data into a set of storage locations of a set of
storage devices; and

wherein accessing the VSP to re-create the operating

environment for the host file system includes process-
ing a second set of commands from the host computer
to read the host data from the same set of storage
locations of the same set of storage devices.

15. A computer program product as in claim 14 wherein
the VSP includes a VSP configuration file system which
stores data defining the operating environment for the host
file system; and

wherein accessing the VSP by the first physical storage

processor further includes controlling a root file system
of the VSP and mounting the VSP configuration file
system and the host file system to the root file system
of the VSP by the first physical storage processor to
access the VSP configuration file system and the host
file system from the first physical storage processor.

16. A computer program product as in claim 15 wherein
accessing the VSP by the second physical storage processor
further includes:

controlling the root file system of the VSP and mounting

the VSP configuration file system and the host file
system to the root file system of the VSP by the second
physical storage processor to access the VSP configu-
ration file system and the host file system from the
second physical storage processor.

17. A computer program product as in claim 15 wherein
the first physical storage processor is considered a primary
owner of the VSP; and wherein accessing the VSP by the
second physical storage processor further includes:

providing the operating environment for the host file

system from the second physical storage processor
while the first physical storage processor remains con-
sidered the primary owner of the VSP.

18. A computer program product as in claim 15 wherein
the method further comprises:

after the second physical storage processor accesses the

VSP to re-create the operating environment for the host
file system from the second physical storage processor,
detecting restored availability of the first physical stor-
age processor, and

after detecting restored availability of the first physical

storage processor, performing a failback operation to
re-access the VSP, by the first physical storage proces-
sor, to re-create the operating environment for the host
file system from the first physical storage processor.

19. A computer program product as in claim 18 wherein
the method further comprises:

US 9,424,117 Bl

23

in response to the detected failure of the first physical
storage processor, trespassing, by the second physical
storage processor, a set of block-based data objects to
the second physical storage processor to concurrently
failover file-based host data access and block-based
host data access from the first physical storage proces-
sor to the second physical storage processor.

20. An electronic apparatus, comprising:

memory; and

a set of physical storage processors coupled to the
memory, the memory storing instructions which, when
carried out by the set of physical storage processors,
cause the set of physical storage processors to:

access, by a first physical storage processor, a virtual
storage processor (VSP) to create an operating envi-
ronment for a host file system from the first physical
storage processot,

after accessing the VSP to create the operating environ-
ment for the host file system from the first physical
storage processor, detect a failure of the first physical
storage processor, and

5

10

15

24

in response to detecting the failure of the first physical
storage processor, access, by a second physical storage
processor of the data storage apparatus, the VSP to
re-create the operating environment for the host file
system from the second physical storage processor;

wherein the set of physical storage processors, when
accessing the VSP to create the operating environment
for the host file system, is constructed and arranged to
process a first set of commands from a host computer
to write host data into a set of storage locations of a set
of storage devices; and

wherein the set of physical storage processors, when
accessing the VSP to re-create the operating environ-
ment for the host file system, is constructed and
arranged to process a second set of commands from the
host computer to read the host data from the same set
of storage locations of the same set of storage devices.

#* #* #* #* #*

